These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A magnetic field augmented ultra-thin layer chromatography coupled surface enhanced Raman spectroscopy separation of hemozoin from bacterial mixture. Author: Yadav S, Bhardwaj R, Mishra P, Singh JP. Journal: J Chromatogr A; 2023 Oct 11; 1708():464318. PubMed ID: 37660559. Abstract: Malaria is considered as one the most widespread disease with highest possibility of co-infection at all levels of the disease prognosis. Rapid detection and discrimination of malaria from other co-infections remains a challenge. Hemozoin is a metabolic biproduct of malaraia possessing paramagnetic property due to presence of iron at its centre. Here, we report a label free, rapid and highly sensitive magnetic field based ultra-thin layer chromatography (UTLC) coupled with surface enhanced Raman spectroscopy (SERS) technique for detection and separation of hemozoin from a bacterial mixture. Highly optimized silver nanorods chip fabricated using glancing angle deposition (GLAD) is explored for the UTLC-SERS separation. These chips possessing channel like characteristic and high surface to the volume ratio serve as excellent UTLC plates. The magnetic nature of hemozoin has been exploited for its separation from the mixture of P. aeruginosa (Gram-negative) and S. aureus (Gram-positive) by allocating a 0.6 T magnet over the UTLC flow setup. The solvent front migrated approximately to a distance of 13 mm from the sample point due to the magnetic environment. Spatially resolved SERS data was collected along the mobile phase and separation of mixture was confirmed. Further, staining of hemozoin, P. aeruginosa and S. aureus was done using methylene blue, acridine orange and rhodamine 6 G respectively. The separation was confirmed for the stained analytes. The present developed method provides plate height as low as 18 µm and hemozoin detection limit as <10 parasites/mL. Therefore, we establish a highly specific and sensitive technique capable of separating small amounts of bioanalytes, aiding in the removal of co-infections from the disease at a very early stage of infection.[Abstract] [Full Text] [Related] [New Search]