These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The "Duckweed Dip": Aquatic Spirodela polyrhiza Plants Can Efficiently Uptake Dissolved, DNA-Wrapped Carbon Nanotubes from Their Environment for Transient Gene Expression. Author: Islam T, Kalkar S, Tinker-Kulberg R, Ignatova T, Josephs EA. Journal: bioRxiv; 2023 Aug 22; ():. PubMed ID: 37662322. Abstract: Duckweeds (Lemnaceae) are aquatic non-grass monocots that are the smallest and fastest-growing flowering plants in the world. While having simplified morphologies, relatively small genomes, and many other ideal traits for emerging applications in plant biotechnology, duckweeds have been largely overlooked in this era of synthetic biology. Here, we report that Greater Duckweed (Spirodela polyrhiza), when simply incubated in a solution containing plasmid-wrapped carbon nanotubes (DNA-CNTs), can directly up-take the DNA-CNTs from their growth media with high efficiency and that transgenes encoded within the plasmids are expressed by the plants-without the usual need for large doses of nanomaterials or agrobacterium to be directly infiltrated into plant tissue. This process, called the "duckweed dip", represents a streamlined, 'hands-off' tool for transgene delivery to a higher plant that we expect will enhance the throughput of duckweed engineering and help to realize duckweed's potential as a powerhouse for plant synthetic biology. (148 words).[Abstract] [Full Text] [Related] [New Search]