These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Distribution and inducibility of cytosolic epoxide hydrolase in male Sprague-Dawley rats.
    Author: Schladt L, Wörner W, Setiabudi F, Oesch F.
    Journal: Biochem Pharmacol; 1986 Oct 01; 35(19):3309-16. PubMed ID: 3768023.
    Abstract:
    Cytosolic epoxide hydrolase (cEH) activity has been determined in liver and various extrahepatic tissues of male Sprague-Dawley rats using trans-stilbene oxide (TSO) and trans-ethylstyrene oxide (TESO) as substrates. Large interindividual differences in the specific activity of cytosolic epoxide hydrolase in the liver from more than 80 individual rats were observed varying by a factor of 38. In a randomly selected group of five animals liver cEH varied by a factor of 3.9 and kidney cEH by a factor of 2.7, whereas liver microsomal epoxide hydrolase and lactate dehydrogenase showed only very low variations (1.4- and 1.1-fold, respectively). The individual relative activity of kidney cEH was related to that of the liver. Cytosolic epoxide hydrolase activity was present in all of six extrahepatic rat tissues investigated. Interestingly specific activities were very high in the heart and kidney (higher than in liver), followed by liver greater than brain greater than lung greater than testis greater than spleen. TSO and TESO hydrolases in subcellular fractions of rat liver were present at highest specific activities in the cytosolic and the heavy mitochondrial fraction. As indicated by the marker enzymes, catalase, urate oxidase and cytochrome oxidase, this organelle-bound epoxide hydrolase activity may be of peroxisomal and/or mitochondrial origin. In the microsomal fraction, TSO and TESO hydrolase activity is very low, whereas STO hydrolase activity is highest in this fraction and very low in cytosol. In kidney, subcellular distribution is similar to that observed in liver. None of the commonly used inducers of xenobiotic metabolizing enzymes caused significant changes in the specific activities of rat hepatic cEH (trans-stilbene oxide, alpha-pregnenolone carbonitrile, 3-methylcholanthrene, beta-naphthoflavone, isosafrole, butylated hydroxytoluene, 2,3,7,8-tetrachlorodibenzo-p-dioxin, dibenzo[a,h]anthracene, phenobarbitone). However, clofibrate, a hypolipidemic agent, very strongly induced rat liver cEH (about 5-fold), whereas microsomal epoxide hydrolase activity was not affected. Specific activity of kidney cEH was increased about 2-fold.
    [Abstract] [Full Text] [Related] [New Search]