These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: NMR study of hybrid hemoglobins containing unnatural heme: effect of heme modification on their tertiary and quaternary structures. Author: Ishimori K, Morishima I. Journal: Biochemistry; 1986 Aug 26; 25(17):4892-8. PubMed ID: 3768321. Abstract: The effect of heme modification on the tertiary and quaternary structures of hemoglobins was examined by utilizing the NMR spectra of the reconstituted [mesohemoglobin (mesoHb), deuterohemoglobin (deuteroHb)] and hybrid heme (meso-proto, deutero-proto) hemoglobins (Hbs). The heme peripheral modification resulted in the preferential downfield shift of the proximal histidine N1H signal for the beta subunit, indicating nonequivalence of the structural change induced by the heme modification in the alpha and beta subunits of Hb. In the reconstituted and hybrid heme Hbs, the exchangeable proton resonances due to the intra- and intersubunit hydrogen bonds, which have been used as the oxy and deoxy quaternary structural probes, were shifted by 0.2-0.3 ppm from that of native Hb upon the beta-heme substitution. This suggests that, in the fully deoxygenated form, the quaternary structure of the reconstituted Hbs is in an "imperfect" T state in which the hydrogen bonds located at the subunit interface are slightly distorted by the conformational change of the beta subunit. Moreover, the two heme orientations are found in the alpha subunit of deuteroHb, but not in the beta subunit of deuteroHb, and in both the alpha and beta subunits of mesoHb. The tertiary and quaternary structural changes in the Hb molecule induced by the heme peripheral modification were also discussed in relation to their functional properties.[Abstract] [Full Text] [Related] [New Search]