These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Isolation of renal brush-border membrane vesicles by a low-speed centrifugation; effect of sex hormones on Na+-H+ exchange in rat and mouse kidney. Author: Macković M, Zimolo Z, Burckhardt G, Sabolić I. Journal: Biochim Biophys Acta; 1986 Nov 06; 862(1):141-52. PubMed ID: 3768361. Abstract: Na+-H+ exchange in rat and mouse renal brush-border membrane vesicles was studied by fluorescence quenching of the delta pH indicator, acridine orange. Brush-border membrane vesicles were isolated by a modified Mg/EGTA-precipitation method at low speed centrifugation (8000 X g). The enzymatic characteristics of these membrane vesicles were similar to those obtained by the original high-speed centrifugation method (Biber et al. (1981) Biochim. Biophys. Acta, 647, 169-176). The rates of Na+-H+ exchange in renal brush-border membrane vesicles from male and female rats were similar. Neither ovariectomy nor treatment of ovariectomized rats with estradiol or testosterone changed the activity of Na+-H+ exchanger. The rates of Na+-H+ exchange in the mouse were smaller than in the rat indicating the existence of species differences. Na+-H+ exchange in mouse renal brush-border membranes exhibit strong sex differences, the rates in the male being higher than in the female. Castration of male mice led to a decrease in Na+-H+ exchange to values found in females. Treatment of castrated mice with estradiol had no effect. In contrast, treatment with testosterone increased the rate of the exchanger by more than 100%. The effect of testosterone was restricted to the Vmax of the Na+-H+ exchanger, whereas the apparent Km for Na+ remained unchanged. Na+-dependent D-glucose transport in mouse renal luminal membranes exhibited also sex differences due to the potent stimulatory effect of testosterone. Therefore, Na+-H+ exchange and Na+-dependent D-glucose transport in the mouse kidney are under control of androgen hormones. This effect could be in close connection with the wellknown renotropic action of androgens in the mouse.[Abstract] [Full Text] [Related] [New Search]