These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Machine learning integrated high quantum yield blue light carbon dots for real-time and on-site detection of Cr(VI) in groundwater and drinking water.
    Author: Zhang M, He H, Huang Y, Huang R, Wu Z, Liu X, Deng H.
    Journal: Sci Total Environ; 2023 Dec 15; 904():166822. PubMed ID: 37683863.
    Abstract:
    The safety of groundwater and drinking water is directly related to the well-being of human beings and ecosystems. On-site monitoring and timely response to heavy metals in these water sources are crucial for water supply security. Fluorescent probes combined with machine learning technology have been applied to on-site detection of heavy metals. However, they were primarily focused on industrial-level detection and lacked the sensitivity required for detecting Cr(VI) in groundwater and drinking water. In this study, we developed an machine learning-integrated approach using high-quantum-yield (QY) N-doped blue-light carbon dots (N-BCDs) for instant detection of Cr(VI) in groundwater and drinking water. N-BCDs were synthesized within 3 min using a household microwave oven with citric acid and 1,2-diaminobenzene, resulting in a QY of approximately 90 %. The fluorescence of N-BCDs was quenched via the internal filter effect (IFE), enabling the detection of Cr(VI) within 1 min, with a detection limit of 0.1574 μg L-1 for Cr(VI) concentrations ranging from 0 to 60 μg L-1. We employed machine learning methods to determine Cr(VI) concentrations from simple shots, based on the red-green-blue (RGB) feature and Kmeans feature extraction. These features were input into four models (Ridge, XGB, SVR, and Linear), achieving a fitness of 95.2 %. Furthermore, the accuracies for Cr(VI) concentration identification in actual groundwater and drinking water were as high as 95.71 % and 96.81 %, respectively. Our work successfully extended the detection range of Cr(VI) to the μg level, significantly improving the practical applicability of the method and providing a new approach for on-site detection of Cr(VI) in groundwater and drinking water.
    [Abstract] [Full Text] [Related] [New Search]