These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Lightweight Algorithm for Apple Detection Based on an Improved YOLOv5 Model. Author: Sun Y, Zhang D, Guo X, Yang H. Journal: Plants (Basel); 2023 Aug 23; 12(17):. PubMed ID: 37687279. Abstract: The detection algorithm of the apple-picking robot contains a complex network structure and huge parameter volume, which seriously limits the inference speed. To enable automatic apple picking in complex unstructured environments based on embedded platforms, we propose a lightweight YOLOv5-CS model for apple detection based on YOLOv5n. Firstly, we introduced the lightweight C3-light module to replace C3 to enhance the extraction of spatial features and boots the running speed. Then, we incorporated SimAM, a parameter-free attention module, into the neck layer to improve the model's accuracy. The results showed that the size and inference speed of YOLOv5-CS were 6.25 MB and 0.014 s, which were 45 and 1.2 times that of the YOLOv5n model, respectively. The number of floating-point operations (FLOPs) were reduced by 15.56%, and the average precision (AP) reached 99.1%. Finally, we conducted extensive experiments, and the results showed that the YOLOv5-CS outperformed mainstream networks in terms of AP, speed, and model size. Thus, our real-time YOLOv5-CS model detects apples in complex orchard environments efficiently and provides technical support for visual recognition systems for intelligent apple-picking devices.[Abstract] [Full Text] [Related] [New Search]