These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Different bacterial and fungal community patterns in restored habitats in coal-mining subsidence areas.
    Author: Wang Y, Zheng G, Zhao Y, Bo H, Li C, Dong J, Wang Y, Yan S, Zhang F, Liu J.
    Journal: Environ Sci Pollut Res Int; 2023 Oct; 30(47):104304-104318. PubMed ID: 37700132.
    Abstract:
    Soil microbiota, which plays a fundamental role in ecosystem functioning, is sensitive to environmental changes. Studying soil microbial ecological patterns can help to understand the consequences of environmental disturbances on soil microbiota and hence ecosystem services. The different habitats with critical environmental gradients generated through the restoration of coal-mining subsidence areas provide an ideal area to explore the response of soil microbiota to environmental changes. Here, based on high-throughput sequencing, we revealed the patterns of soil bacterial and fungal communities in habitats with different land-use types (wetland, farmland, and grassland) and with different restored times which were generated during the ecological restoration of a typical coal-mining subsidence area in Jining City, China. The α-diversity of bacterial was higher in wetland than in farmland and grassland, while that of fungi had no discrepancy among the three habitats. The β-diversity of bacterial community in the grassland was lower than in the farmland, and fungal community was significant different in all three habitats, showing wetland, grassland, and farmland from high to low. The β-diversity of the bacterial community decreased with restoration time while that of the fungal community had no significant change in the longer-restoration-time area. Furthermore, soil electrical conductivity was the most important driver for both bacterial and fungal communities. Based on the taxonomic difference among different habitats, we identified a group of biomarkers for each habitat. The study contributes to understand the microbial patterns during the ecological restoration of coal-mining subsidence areas, which has implications for the efficient ecological restoration of subsidence areas.
    [Abstract] [Full Text] [Related] [New Search]