These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Strain engineering on electronic structure, effective mass and charge carrier mobility in monolayer YBr3. Author: Sun H, Wang L, Li Z, Yan X, Zhang X, Guo J, Liu P. Journal: J Phys Condens Matter; 2023 Sep 27; 36(1):. PubMed ID: 37714188. Abstract: In recent years, two-dimensional materials have significant prospects for applications in nanoelectronic devices due to their unique physical properties. In this paper, the strain effect on the electronic structure, effective mass, and charge carrier mobility of monolayer yttrium bromide (YBr3) is systematically investigated using first-principles calculation based on density functional theory. It is found that the monolayer YBr3undergoes energy band gap reduction under the increasing compressive strain. The effective mass and charge carrier mobility can be effectively tuned by the applied compressive strain. Under the uniaxial compressive strain along the zigzag direction, the hole effective mass in the zigzag direction (mao1_h) can decrease from 1.64m0to 0.45m0. In addition, when the uniaxial compressive strain is applied, the electron and hole mobility can up to ∼103cm2V-1s-1. The present investigations emphasize that monolayer YBr3is expected to be a candidate material for the preparation of new high-performance nanoelectronic devices by strain engineering.[Abstract] [Full Text] [Related] [New Search]