These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phosphorylation of axin within biomolecular condensates counteracts its tankyrase-mediated degradation.
    Author: Klement K, Brückner M, Bernkopf DB.
    Journal: J Cell Sci; 2023 Oct 15; 136(20):. PubMed ID: 37721093.
    Abstract:
    Axin (also known as AXIN1) is a central negative regulator of the proto-oncogenic Wnt/β-catenin signaling pathway, as axin condensates provide a scaffold for the assembly of a multiprotein complex degrading β-catenin. Axin, in turn, is degraded through tankyrase. Consequently, tankyrase small-molecule inhibitors block Wnt signaling by stabilizing axin, revealing potential for cancer therapy. Here, we discovered that axin is phosphorylated by casein kinase 1 alpha 1 (CSNK1A1, also known as CK1α) at an N-terminal casein kinase 1 consensus motif, and that this phosphorylation is antagonized by the catalytic subunit alpha of protein phosphatase 1 (PPP1CA, hereafter referred to as PP1). Axin condensates promoted phosphorylation by enriching CK1α over PP1. Importantly, the phosphorylation took place within the tankyrase-binding site, electrostatically and/or sterically hindering axin-tankyrase interaction, and counteracting tankyrase-mediated degradation of axin. Thus, the presented data propose a novel mechanism regulating axin stability, with implications for Wnt signaling, cancer therapy and self-organization of biomolecular condensates.
    [Abstract] [Full Text] [Related] [New Search]