These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Apparent Failures in Interpretation of Interfacial Characterization When Formulating Emulsions Stabilized by Cellulose Nanocrystals. Author: Fournier R, Caye Díaz M, Cranston ED, Frostad JM. Journal: Langmuir; 2023 Oct 03; 39(39):13921-13931. PubMed ID: 37737569. Abstract: Cellulose nanocrystals (CNCs) are sustainable particles that are effective at stabilizing emulsions by adsorbing at droplet interfaces and providing a steric barrier to coalescence. However, CNCs have surface charges that reduce the coverage of the emulsion droplets due to the electrostatic repulsion between CNCs. In such cases, adding salt is a typical (and straightforward) way to adjust the formulation so that the charges are screened, allowing increased coverage of the droplets. At the outset of this work, we hypothesized that characterization of the interfacial tension and interfacial shear rheology of the oil-water interface would be correlated to interfacial coverage and therefore predictive of the optimal salt concentration for emulsion stability. Included in the methods section as a useful reference to others is the presentation of a detailed derivation for the equations needed to compute interfacial shear moduli in a custom, double-gap geometry. In contrast to our hypothesis, we found that interfacial tension did not correlate well with emulsion stability and that the native surface-active compounds in corn oil overwhelmed any influence of the CNCs on the interfacial tension. Additionally, we found that interfacial shear rheology (which can be painstakingly difficult to measure) was not a useful tool for formulating these emulsions. This is because at commonly used concentrations of CNCs, the bulk rheology is increased to a much greater degree than that of the interface, making the details of the interfacial rheology unimportant. Finally, we found that at concentrations of CNCs that are typical in industrial processes, characterizing the bulk viscoelastic properties of the aqueous suspending phase without added oil (a relatively simple measurement) is sufficient to predict the influence of NaCl concentration on charge screening between the CNCs and, by extension, increased surface coverage of droplets for greater emulsion stability.[Abstract] [Full Text] [Related] [New Search]