These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Bacterial cellulose-based film with self-floating hierarchical porous structure for efficient solar-driven interfacial evaporation.
    Author: Jin M, Qu X, Li J, Deng L, Han Z, Chen S, Wang H.
    Journal: Carbohydr Polym; 2023 Dec 01; 321():121324. PubMed ID: 37739511.
    Abstract:
    Interface solar water evaporation is a mean of rapidly evaporating water using solar energy. However, it is still a challenge to obtain solar evaporators with simple assembly, durability and high photothermal performance. Here, we demonstrated an effective post foaming strategy for treating nitrogen-doped reduced graphene oxide/bacterial cellulose film (F-NRGO@BC) prepared by a simple in situ culture method. The composite film contains hierarchical porous structure and bubbles on the film, achieving an integrated self-floating interface evaporator with excellent light absorption (96.5 %) and high toughness (200.18 kJ m-3). Porous structure and low enthalpy of F-NRGO@BC make a high evaporation rate of 1.68 kg m-2 h-1 and a low thermal conductivity of 0.644 W m-1 K-1 to ensure effective energy efficiency and heat insulation. This design of controlling surface morphology and internal structure provides a novel way for large-scale preparation and high-performance evaporator.
    [Abstract] [Full Text] [Related] [New Search]