These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Optimization and mechanistic approach for removal of crystal violet and methylene blue dyes via activated carbon from pyrolyzed-ZnCl2 bamboo waste. Author: Hapiz A, Jawad AH, Wilson LD, ALOthman ZA, Abdulhameed AS, Algburi S. Journal: Int J Phytoremediation; 2024; 26(4):579-593. PubMed ID: 37740456. Abstract: In this study, bamboo waste (BW) was subjected to pyrolysis-assisted ZnCl2 activation to produce mesoporous activated carbon (BW-AC), which was then evaluated for its ability to remove cationic dyes, specifically methylene blue (MB) and crystal violet (CV), from aqueous environments. The properties of BW-AC were characterized using various techniques, including potentiometric-based point of zero charge (pHpzc), scanning electron microscopy with energy dispersive X-rays (SEM-EDX), X-ray diffraction (XRD), gas adsorption with Brunauer-Emmett-Teller (BET) analysis, infrared (IR) spectroscopy. To optimize the adsorption characteristics (BW-AC dosage, pH, and contact time) of PBW, a Box-Behnken design (BBD) was employed. The BW-AC dose of 0.05 g, solution pH of 10, and time of 8 min are identified as optimal operational conditions for achieving maximum CV (89.8%) and MB (96.3%) adsorption according to the BBD model. The dye removal kinetics for CV and MB are described by the pseudo-second-order model. The dye adsorption isotherms revealed that adsorption of CV and MB onto BW-AC follow the Freundlich model. The maximum dye adsorption capacities (qmax) of BW-AC for CV (530 mg/g) and MB (520 mg/g) are favorable, along with the thermodynamics of the adsorption process, which is characterized as endothermic and spontaneous. The adsorption mechanism of CV and MB dyes by BW-AC was attributed to multiple contributions: hydrogen bonding, electrostatic forces, π-π attraction, and pore filling. The findings of this study highlight the potential of BW-AC as an effective adsorbent in wastewater treatment applications, contributing to the overall goal of mitigating the environmental impact of cationic dyes and ensuring the quality of water resources. The novelty of this research work comes from the conversion of the bamboo waste (BW) into mesoporous activated carbon (BW-AC) via pyrolysis-assisted ZnCl2 activation for the removal of cationic dyes such as methylene blue (MB) and crystal violet (CV) from aqueous media. The effectiveness of the obtained activated carbon was tested toward removal of two structurally different cationic dyes (CV and MB), where a statistical optimization employing a response surface methodology with Box-Behnken design was applied to optimize dye removal. In addition to determination of the working parameters for dye removal, the adsorption kinetics and thermodynamic parameters for the adsorption process were determined to provide molecular-level insight.[Abstract] [Full Text] [Related] [New Search]