These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The Role of Lattice Defects on the Optical Properties of TiO2 Nanotube Arrays for Synergistic Water Splitting. Author: Machreki M, Chouki T, Tyuliev G, Fanetti M, Valant M, Arčon D, Pregelj M, Emin S. Journal: ACS Omega; 2023 Sep 19; 8(37):33255-33265. PubMed ID: 37744782. Abstract: In this study, we report a facile one-step chemical method to synthesize reduced titanium dioxide (TiO2) nanotube arrays (NTAs) with point defects. Treatment with NaBH4 introduces oxygen vacancies (OVs) in the TiO2 lattice. Chemical analysis and optical studies indicate that the OV density can be significantly increased by changing reduction time treatment, leading to higher optical transmission of the TiO2 NTAs and retarded carrier recombination in the photoelectrochemical process. A cathodoluminescence (CL) study of reduced TiO2 (TiO2-x) NTAs revealed that OVs contribute significantly to the emission bands in the visible range. It was found that the TiO2 NTAs reduced for a longer duration exhibited a higher concentration of OVs. A typical CL spectrum of TiO2 was deconvoluted to four Gaussian components, assigned to F, F+, and Ti3+ centers. X-ray photoelectron spectroscopy measurements were used to support the change in the surface chemical bonding and electronic valence band position in TiO2. Electron paramagnetic resonance spectra confirmed the presence of OVs in the TiO2-x sample. The prepared TiO2-x NTAs show an enhanced photocurrent for water splitting due to pronounced light absorption in the visible region, enhanced electrical conductivity, and improved charge transportation.[Abstract] [Full Text] [Related] [New Search]