These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Abundance, diversity and physiological preferences of comammox Nitrospira in urban groundwater. Author: Tang X, Li Y, Liu M, Hou L, Han P. Journal: Sci Total Environ; 2023 Dec 15; 904():167333. PubMed ID: 37748616. Abstract: Complete ammonia oxidizer (comammox Nitrospira), catalyze complete nitrification process in a single organism, are frequently detected in groundwater ecosystem. However, the ecological niches and environmental driving factors of comammox Nitrospira in urban groundwater are largely unknown. Here we investigated the communities of ammonia oxidizers in urban groundwater located in Shanghai city, China. Quantitative analysis demonstrated the dominance of comammox Nitrospira over classical ammonia oxidizers (ammonia-oxidizing archaea and bacteria, AOA and AOB). Phylogenetic analysis showed clades B and A2 comprise the majority of comammox Nitrospira groups. Temperature was one of the most vital factors affecting comammox Nitrospira community. Furthermore, clade A comammox Nitrospira can be enriched by urea substrate, which was in line with the ability of utilizing urea by the pure clade A comammox culture Nitrospira inopinata. In addition, we observed that relatively low temperature (<20 °C) and high copper levels (>0.04 mg L-1) can stimulate the growth of comammox Nitrospira. Overall, this study revealed the presence, diversity and physiological preferences of comammox Nitrospira in urban groundwater nitrification, shedding insights on the ecological roles of comammox Nitrospira in subsurface environment.[Abstract] [Full Text] [Related] [New Search]