These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Quantum correlations in the frustrated XY model on the honeycomb lattice. Author: Satoori S, Mahdavifar S, Vahedi J. Journal: Sci Rep; 2023 Sep 25; 13(1):16034. PubMed ID: 37749292. Abstract: We have investigated the spin-1/2 XY frustrated antiferromagnetic Heisenberg honeycomb model, which features an intermediate region in its ground state phase diagram that is not well understood. The two dominant phases in the diagram are the quantum spin-liquid (QSL) and the antiferromagnetic Ising order. Quantum correlations suggest that the QSL phase is likely to exhibit entanglement. To explore this possibility, we utilized numerical Lanczos and density matrix renormalization group (DMRG) methods to calculate concurrence, quantum discord (QD), and entanglement entropy. The results of our study indicate the existence of quantum entanglement within the intermediate region, implying a greater probability for the dominance of the quantum spin-liquid (QSL) phase over the antiferromagnetic Ising order. This discovery underscores the importance of considering quantum correlations in comprehending the model's behavior and provides insight into the complex nature of quantum systems.[Abstract] [Full Text] [Related] [New Search]