These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bimetallic nanocubes embedded in biomass-derived porous carbon to construct magnetic/carbon dual-mechanism layered structures for efficient microwave absorption. Author: Zheng H, Nan K, Wang W, Li Q, Wang Y. Journal: J Colloid Interface Sci; 2024 Jan; 653(Pt A):930-941. PubMed ID: 37774656. Abstract: Biomass-derived porous carbon materials have great potential for the development of lightweight and efficient broadband microwave absorbers. In this study, we reported the successful immobilization of Co3O4/CoFe2O4 nanocubes on porous carbon derived from ginkgo biloba shells by activated carbonization and electrostatic self-assembly processes. The optimal reflection loss value of the prepared BPC@Co3O4/CoFe2O4 reaches -68.5 dB when the filling load is 10 wt%, and the effective absorption bandwidth is 6.2 GHz with a matching thickness of 2 mm. The excellent microwave absorption (MA) performance is attributed to the rational three-dimensional structural design, the modulation of magnetic/carbon components, the optimized impedance matching, and the coordinated action of multiple mechanisms. It was further demonstrated by high-frequency structural simulation that the composite can effectively dissipate microwave energy in practical applications. Therefore, the results indicate a favorable potential of the synthesis and application of semiconductor/magnetic component/biomass-derived carbon microwave absorbing materials.[Abstract] [Full Text] [Related] [New Search]