These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Physicochemical fabrication of chitosan and algae with crosslinking glyoxal for cationic dye removal: Insight into optimization, kinetics, isotherms, and adsorption mechanism. Author: Agha HM, Abdulhameed AS, Jawad AH, Sidik NJ, Aazmi S, ALOthman ZA, Wilson LD, Algburi S. Journal: Int J Biol Macromol; 2023 Dec 31; 253(Pt 5):127112. PubMed ID: 37774818. Abstract: Herein, a highly efficient and sustainable adsorbent of cross-linked chitosan-glyoxal/algae biocomposite (CHT-GLX/ALG) adsorbent was developed through an innovative hydrothermal cross-linking method. The CHT-GLX/ALG biocomposite was characterized using several complementary analytical methods that include CHN-O, XRD, FTIR, SEM-EDX, and pHpzc. This new adsorbent, named CHT-GLX/ALG, was utilized for the adsorption of a cationic dye (methyl violet 2B; MV 2B), from synthetic wastewater. The optimization of the dye adsorption process involved key parameters is listed: CHT-GLX/ALG dosage (from 0.02 to 0.1 g/100 mL), pH (from 4 to 10), and contact time (from 20 to 180 min) that was conducted using the Box-Behnken design (BBD). The optimal adsorption conditions for the highest decolorization efficiency of MV 2B (97.02 %) were estimated using the statistical model of the Box-Behnken design. These conditions include a fixed adsorbent dosage of 0.099 g/100 mL, pH 9.9, and a 179.9 min contact time. The empirical data of MV 2B adsorption by CHT-GLX/ALG exhibited favorable agreement with the Freundlich isotherm model. The kinetic adsorption profile of MV 2B by CHT-GLX/ALG revealed a good fit with the pseudo-second-order model. The maximum adsorption capacity (qmax) for MV 2B by CHT-GLX/ALG was estimated at 110.8 mg/g. The adsorption of MV 2B onto the adsorbent can be attributed to several factors, including electrostatic interactions between the negatively charged surface of CHT-GLX/ALG and the MV 2B cation, as well as n-π and H-bonding. These interactions play a crucial role in facilitating the effective adsorption of MV 2B onto the biocomposite adsorbent. Generally, this study highlights the potential of CHT-GLX/ALG as an efficient and sustainable adsorbent for the effective removal of organic dyes.[Abstract] [Full Text] [Related] [New Search]