These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Performance and mechanism of CO2 absorption during the simultaneous removal of SO2 and NOx by wet scrubbing process. Author: Lu P, Yan X, Ye L, Chen D, Chen D, Huang J, Cen C. Journal: J Environ Sci (China); 2024 Jan; 135():534-545. PubMed ID: 37778825. Abstract: The co-removal of CO2 while removing SO2 and NOx from industrial flue gas has great potential of carbon emission reduction but related research is lacking. In this study, a wet scrubbing process with various urea solutions for desulfurization and denitrification was explored for the possibility of CO2 absorption. The results showed that the urea-additive solutions were efficient for NOx and SO2 abatement, but delivered < 10% CO2 absorption efficiency. The addition of Ca(OH)2 dramatically enhanced the CO2 absorption, remained the desulfurization efficiency, unfortunately restricted the denitrification efficiency. Among various operating parameters, pH of solution played a determining role during the absorption. The contradictory pH demands of CO2 absorption and denitrification were observed and discussed in detail. A higher pH of solution than 10 was favorable for CO2 absorption, while the oxidizing of NO to NO2, NO2- or NO3- by NaClO2 was inhibited in this condition. When 7 < pH < 10, it was favorable for the conversion and absorption of NO and NOx. However, the conversion of HCO3- to CO32- was significantly inhibited, hence preventing the absorption of CO2. Large part of Ca(OH)2 became CaCO3 with a finer particle size, which covered the unreacted Ca(OH)2 surface after the reaction. Kinetic analysis showed that the CO2 absorption in urea-NaClO2-Ca(OH)2 absorbent was controlled by chemical reaction in early stage, then by ash layer diffusion in later stage.[Abstract] [Full Text] [Related] [New Search]