These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Optimization and validation of an extraction method for the analysis of multi-class emerging contaminants in soil and sediment. Author: Nguyen TTN, Baduel C. Journal: J Chromatogr A; 2023 Nov 08; 1710():464287. PubMed ID: 37797419. Abstract: Analytical methods for the determination of multi-class emerging contaminants are limited for soil and sediment while they are essential to provide a more complete picture of their distribution in the environment and to understand their fate in different environmental compartments. In this paper, we present the development and optimization of an analytical strategy that combines reliable extraction, purification and the analysis using ultra-pressure liquid chromatography triple quadrupole mass spectrometry (UPLC-MS/MS) of 90 emerging organic contaminants including pesticides, pharmaceuticals and personal care products, flame retardants, per- and polyfluoroalkyl substances (PFASs) and plasticizers in soil and sediment. To extract a wide range of chemicals, the extraction strategy is based on the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) approach. A number of different options were investigated (buffer, acidification, addition of EDTA, different types and combinations of dispersive SPE etc.) and the effectiveness of the chemical extraction procedure and the clean-up was assessed for two matrices: soil (organic matter content of 9%) and sediment (organic matter content of 1.9%). The method was fully validated for both matrices, in terms of accuracy, linearity, repeatability (intra-day), reproducibility (inter-day), method limits of detection and quantification (LODs and MLOQs, respectively). The final performance showed good accuracy and precision (mean recoveries were between 70 and 120% with relative standard deviations (RSD) less than 20% in most cases), low matrix effects, good linearity for the matrix-matched calibration curve (R2≥0.991) and MLOQs ranged from 0.25 and 10 µg/kg. To demonstrate the applicability and suitability of the validated method, soil and sediment samples from Vietnam, France, Sweden and Mexico were analyzed. The results showed that of the 90 target compounds, a total of 33 were quantified in the sediment and soil samples analyzed. In addition to multi-target analysis, this strategy could be suitable for non-target screening, to provide a more comprehensive view of the contaminants present in the samples.[Abstract] [Full Text] [Related] [New Search]