These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Confined amphipathic ionic-liquid regulated anodic aluminum oxide membranes with adjustable ion selectivity for improved osmotic energy conversion. Author: Ma S, Hao J, Hou Y, Zhao J, Lin C, Sui X. Journal: J Colloid Interface Sci; 2024 Jan; 653(Pt B):1217-1224. PubMed ID: 37797497. Abstract: To attain carbon neutrality and carbon peaking, there is an urgent need to convert the vast amount of blue energy present between seawater and river water into usable electricity. Reverse electrodialysis based on ion-exchange membranes is a promising way to efficiently achieve osmotic energy conversion. Anodic aluminum oxide (AAO) membranes are frequently used for osmotic energy harvesting because of their uniform nanopore channels, high flux, and excellent stability. However, the existing surface modification methods are complex and inefficient. In this study, an amphiphilic ionic liquid was selected to modify a porous anodic alumina membrane via simple capillary insertion. Due to the abundance of pH-dependent amphiphilic OH groups on the surface of AAO pore channels, the ionic liquids not only provide abundant surface charge but can also intelligently adjust its surface charge to different environments. In addition, it fills the AAO nanochannels to provide a continuous ion transport network. The modified hybrid membrane achieves efficient and stable osmotic energy conversion performance. This simple and feasible strategy paves the way for further improvements in commercial membranes.[Abstract] [Full Text] [Related] [New Search]