These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Peptide-graphene logic sensing system for dual-mode detection of exosomes, molecular information processing and protection. Author: Lu JY, Guo Z, Huang WT, Bao M, He B, Li G, Lei J, Li Y. Journal: Talanta; 2024 Jan 15; 267():125261. PubMed ID: 37801930. Abstract: Peptides with highly sequence-dependent recognition, assembly, and encoding abilities can perform functions similar to DNA or even better, such as biosensing, molecular information processing, coding, or storage. However, the combination of versatile peptides and 2D materials are rarely used for multipurpose integrated applications, including biosensing, information processing and security. Herein, peptide-graphene sensing system was comprehensively used for dual-signal sensing of tumor-derived exosomes (TDEs), logic computing, and information protection. The system used fluorescent-labeled CD63-binding peptide CP05 and graphene oxide (GO) to selectively detect CD63 and TDEs by fluorescence and resonance light scattering. From three levels such as matter, energy, and information analysis, the matter and energy changes in GO-CP05 peptide sensing system were transformed into valuable information, which achieve the dual-mode quantitative detection of TDEs and its marker CD63, and the actual serum analysis. This matter-energy interaction network was also informationized, and utilized for parallel and batch logic computing, two kinds of molecular crypto-steganography (based on peptide sequence and Boolean logic relationships), which facilitates development of intelligent sensing and advanced information technology. This work not only provides a new method for sensitive detection of important disease markers, but also provides ideas for integrating molecular sensing and informatization to open molecular digitization.[Abstract] [Full Text] [Related] [New Search]