These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Are unmanned aerial vehicle-based hyperspectral imaging and machine learning advancing crop science?
    Author: Matese A, Prince Czarnecki JM, Samiappan S, Moorhead R.
    Journal: Trends Plant Sci; 2024 Feb; 29(2):196-209. PubMed ID: 37802693.
    Abstract:
    The past few years have seen increased interest in unmanned aerial vehicle (UAV)-based hyperspectral imaging (HSI) and machine learning (ML) in agricultural research, concomitant with an increase in published research on these topics. We provide an updated review, written for agriculturalists, highlighting the benefits in the retrieval of biophysical parameters of crops via UAVs relative to less sophisticated options. We reviewed >70 recent papers and found few consistent results between similar studies. Owing to their high complexity and cost, especially when applied to crops of low value, the benefits of most of the research reviewed are difficult to explain. Future effort will be necessary to distill research findings into lower-cost options for end-users.
    [Abstract] [Full Text] [Related] [New Search]