These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Study on potential antigenicity and functional properties of whey protein treated by high hydrostatic pressure based on structural analysis.
    Author: Yu XX, Wang XH, Zhang SA, Zhang YH, Zhang HL, Yin YQ.
    Journal: Food Res Int; 2023 Nov; 173(Pt 1):113218. PubMed ID: 37803536.
    Abstract:
    High hydrostatic pressure (HHP) is extensively utilized in the field of food processing due to its remarkable ability to preserve the freshness of food. The potential antigenicity of β-lactoglobulin (β-LG) in whey protein isolate (WPI, 3%) treated by HHP was detected by enzyme linked immunosorbent assay (ELISA) using monoclonal antibodies. Furthermore, the impact of pressure-induced structural alterations on the emulsification properties and antioxidant activity of WPI was investigated. The findings revealed that pressures exceeding 300 MPa resulted in molecular aggregation, the formation of inter-molecular disulfide bonds, and an increase in surface hydrophobicity (H0). The percentage of β-sheet decreased along with the pressure. The results showed the increment of α-helix and β-turn with pressure. ELISA demonstrated a significant reduction in the antigenicity of β-LG following HHP treatment (100-600 MPa), with a slight recovery observed at 300 MPa. These spatial structural modifications led to the unfolding of the β-LG molecule, thereby enhancing its digestibility. Moreover, HHP treatment substantially improved the antioxidant properties, with the exposure to hydrophobic amino acids contributing to increased antioxidant properties and emulsion stability.
    [Abstract] [Full Text] [Related] [New Search]