These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Novel edible films fabricated with HG-type pectin extracted from different types of hybrid citrus peels: Effects of pectin composition on film properties. Author: Said NS, Olawuyi IF, Cho HS, Lee WY. Journal: Int J Biol Macromol; 2023 Dec 31; 253(Pt 6):127238. PubMed ID: 37816465. Abstract: This study investigated the valorization of novel HG-type hybrid citrus pectins derived from three cultivars: Setoka (ST), Kanpei (KP), and Shiranui (SH), and their application as packaging materials. The physicochemical properties of these pectins and their corresponding films were evaluated and compared to commercial citrus pectin. Significant variations were observed in pectin yield (18.15-24.12 %) and other physicochemical characteristics, such as degree of esterification (DE), degree of methoxylation (DM), and monosaccharide composition, among the different cultivars. All hybrid citrus pectins were classified as high-methoxy pectin types (66.67-72.89 %) with typical structural configurations like commercial citrus pectin. However, hybrid citrus pectin films exhibited superior physical properties, including higher mechanical strength, flexibility, and lower water solubility than commercial citrus pectin film, while maintaining similar transparency and moisture content. Additionally, the films displayed smooth and uniform surface morphology, confirming their excellent film-forming properties. Correlation analysis revealed that DE positively influenced mechanical properties (r = 1.0). Furthermore, the monosaccharide composition of pectins showed strong relationships (r = 0.8-1.0) with the film's mechanical and barrier properties. These findings highlight the potential of hybrid citrus pectin as potential packaging material, and the knowledge of the structure-function relationship obtained in this study could be useful for the tailored modification of citrus pectin-based packages.[Abstract] [Full Text] [Related] [New Search]