These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A novel small-molecule compound S-342-3 effectively inhibits the biofilm formation of Staphylococcus aureus.
    Author: Zhang J, Shen L, Zhou P, Chen S, Wang B, Wan C, Han W, Rao L, Zhao H, Wang X, Wu C, Shi J, Xiao Y, Song Z, Yu F, Lin C.
    Journal: Microbiol Spectr; 2023 Dec 12; 11(6):e0159623. PubMed ID: 37819121.
    Abstract:
    Biofilms are an important virulence factor in Staphylococcus aureus and are characterized by a structured microbial community consisting of bacterial cells and a secreted extracellular polymeric matrix. Inhibition of biofilm formation is an effective measure to control S. aureus infection. Here, we have synthesized a small molecule compound S-342-3, which exhibits potent inhibition of biofilm formation in both MRSA and MSSA. Further investigations revealed that S-342-3 exerts inhibitory effects on biofilm formation by reducing the production of polysaccharide intercellular adhesin and preventing bacterial adhesion. Our study has confirmed that the inhibitory effect of S-342-3 on biofilm is achieved by downregulating the expression of genes responsible for biofilm formation. In addition, S-342-3 is non-toxic to Galleria mellonella larvae and A549 cells. Consequently, this study demonstrates the efficacy of a biologically safe compound S-342-3 in inhibiting biofilm formation in S. aureus, thereby providing a promising antibiofilm agent for further research.
    [Abstract] [Full Text] [Related] [New Search]