These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Impact of ocean acidification on shells of the abalone species Haliotis diversicolor and Haliotis discus hannai.
    Author: Guo X, Huang M, Luo X, You W, Ke C.
    Journal: Mar Environ Res; 2023 Nov; 192():106183. PubMed ID: 37820478.
    Abstract:
    Ocean acidification (OA) results from the absorption of anthropogenic CO2 emissions by the ocean and threatens the survival of many marine calcareous organisms including molluscs. We studied OA effects on adult shells of the abalone species Haliotis diversicolor and Haliotis discus hannai that were exposed to three pCO2 conditions (ambient, ∼880, and ∼1600 μatm) for 1 year. Shell periostracum corrosion under OA was observed for both species. OA reduced shell hardness and altered the nacre ultrastructure in H. diversicolor, making its shells more vulnerable to crushing force. OA exposure did not reduce the shell hardness of H. discus hannai and did not alter nacre ultrastructure. However, the reduced calcification also decreased its resistance to crushing force. Sr/Ca in the shell increased with rising calcification rate. Mg/Ca increased upon OA exposure could be due to a complimentary mechanism of preventing shell hardness further reduced. The Na/Ca distribution between the aragonite and calcite of abalone shells was also changed by OA. In general, both abalone species are at a greater risk in a more acidified ocean. Their shells may not provide sufficient protection from predators or to transportation stress in aquaculture.
    [Abstract] [Full Text] [Related] [New Search]