These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The interplay between scale, pollination niche and floral attractiveness on density-dependent plant-pollinator interactions. Author: Ye ZM, Jin XF, He YD, Cao Y, Zou Y, Wang QF, Traveset A, Bergamo PJ, Yang CF. Journal: Oecologia; 2023 Oct; 203(1-2):193-204. PubMed ID: 37823959. Abstract: Pollinators mediate interspecific and intraspecific plant-plant indirect interactions (competition vs. facilitation) via density-dependent processes, potentially shaping the dynamics of plant communities. However, it is still unclear which ecological drivers regulate density-dependent patterns, including scale, pollination niches (i.e., the main pollinator functional group) and floral attractiveness to pollinators. In this study, we conducted three-year field observations in Hengduan Mountains of southwest China. By gathering data for more than 100 animal-pollinated plant species, we quantified the effect (positive vs. negative) of conspecific and heterospecific flower density on pollination at two scales: plot-level (4 m2) and site-level (100-5000 m2). Then, we investigated how pollination niches and floral attractiveness to pollinators (estimated here as average per-flower visitation rates) modulated density-dependent pollination interactions. Pollinator visitation depended on conspecific and heterospecific flower density, with rare plants subjected to interspecific competition at the plot-level and interspecific facilitation at the site-level. Such interspecific competition at the plot-level was stronger for plants pollinated by diverse insects, while interspecific facilitation at the site-level was stronger for bee-pollinated plants. Moreover, we also found stronger positive conspecific density-dependence for plants with lower floral attractiveness at the site-level, meaning that they become more frequently visited when abundant. Our study indicates that the role of pollination in maintaining rare plants and plant diversity depends on the balance of density-dependent processes in species-rich communities. We show here that such balance is modulated by scale, pollination niches and floral attractiveness to pollinators, indicating the context-dependency of diversity maintenance mechanisms.[Abstract] [Full Text] [Related] [New Search]