These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Complexation-based selectivity of organic phosphonates adsorption from high-salinity water by neodymium-doped nanocomposite. Author: Ni C, Chen N, He J, Pan M, Wang X, Pan B. Journal: Water Res; 2023 Nov 01; 246():120705. PubMed ID: 37827040. Abstract: Organic phosphonates have been widely used in various industries and are ubiquitous in wastewaters, and efficient removal of phosphonates is still a challenge for the conventional processes because of the severe interferences from the complex water constitutions. Herein, an Nd-based nanocomposite (HNdO@PsAX) was fabricated by immobilizing hydrated neodymium oxide (HNdO) nanoparticles inside a polystyrene anion exchanger (PsAX) to remove phosphonates from high-salinity aqueous media. Batch experiments demonstrated that HNdO@PsAX had an excellent adsorption capacity (∼90.5 mg P/g-Nd) towards a typical phosphonate (1-hydrox-yethylidene-1,1-diphosphonic acid, HEDP) from the background of 8 g/L NaCl, whereas negligible HEDP adsorption was achieved by PsAX. Attractively, various coexisting substances (humic acid, phosphate, citrate, EDTA, metal ligands, and anions) exerted negligible effects on the HEDP adsorption by HNdO@PsAX under high salinity. FT-IR and XPS analyses revealed that the inner-sphere complexation between HEDP and the immobilized HNdO nanoparticles is responsible for HEDP adsorption. Fixed-bed experiments further verified that HNdO@PsAX was capable of successively treating more than 4500 bed volumes (BV) of a synthetic high-salinity wastewater (1.0 mg P/L of HEDP), whereas only ∼2 BV of effective treatment capacity was received by PsAX. The exhausted HNdO@PsAX was amenable to a complete regeneration by a binary NaOHNaCl solution without significant loss in capacity. The capability in removing other organic phosphonates and treating a real electroplating wastewater by HNdO@PsAX was further validated. Generally, HNdO@PsAX exhibited a great potential in efficiently removing phosphonates from high-salinity wastewater.[Abstract] [Full Text] [Related] [New Search]