These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Soil properties determine the impact of nZVI on Lactuca sativa L and its rhizosphere. Author: Gil-Díaz M, Álvarez-Aparicio J, Alonso J, Mancho C, Lobo MC, González J, García-Gonzalo P. Journal: Environ Pollut; 2024 Jan 15; 341():122683. PubMed ID: 37827356. Abstract: Nanoscale zero-valent iron (nZVI) is a promising material tool for the remediation of metal(loid)-contaminated soils since it reduces metal(loid) availability and plant uptake, thereby enhancing the development of the plants. However, the effects of nZVI as nanoparticles on soil properties, plants, and the microbial rhizosphere in unpolluted soils are poorly understood. Here we tested the impact of nZVI at different doses (0.5 and 5% of commercial suspension) on soil properties, lettuce plants, and their microbial rhizosphere in two non-contaminated soils with distinct physico-chemical properties (alkaline versus acidic soil). To this end, a pot experiment was performed with lettuce plants in a growth chamber for a month. Both soils showed an increase in of pH and available Fe after nZVI application. However, these effects were more marked in the acidic soil. In this regard, the plants in this soil showed increased biomass and Fe content. TEM analysis revealed that although the roots and leaves of plants grown in the alkaline soil showed better cell integrity than those in acidic soil-an observation that was consistent with the visual appearance of the plants-the former were more affected by the nZVI treatment. Regarding the microbial rhizosphere, in general, nZVI enhanced enzyme activity regardless of the soil type. Microbial functional diversity showed a significant decline in response to nZVI in alkaline soil. In contrast, the 0.5% nZVI treatment had a positive effect on this parameter in acidic soil. Bacterial genetic diversity was less affected by the presence of nZVI than fungal diversity, which was higher in nZVI-treated acidic soils. In addition, alterations of bacterial and fungal communities were associated with available Fe in acidic soil. In conclusion, soil properties play a key role in determining the effects of nZVI on lettuce plants and their rhizosphere.[Abstract] [Full Text] [Related] [New Search]