These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bifunctional near-infrared fluorescent probe for the selective detection of bisulfite and hypochlorous acid in food, water samples and in vivo. Author: Shang Z, Meng Q, Zhang R, Zhang Z. Journal: Anal Chim Acta; 2023 Oct 23; 1279():341783. PubMed ID: 37827680. Abstract: We report the development of a bifunctional near-infrared fluorescent probe (QZB) for selective sensing of bisulfite (HSO3-) and hypochlorous acid (HOCl). The synergistic detection of HSO3- and HOCl was achieved via a C=C bond recognition site. In comparison with the red-fluorescence QZB, two different products with non-fluorescence and paleturquoise fluorescence were produced by the recognition of QZB towards HSO3- and HOCl respectively, which can realize effectively the dual-functional detection of HSO3- and HOCl. QZB features prominent preponderances of dual-function response, near-infrared emission, reliability at physiological pH, low cytotoxicity and high sensitivity to HSO3- and HOCl. The detection of HSO3- in actual food samples has been successfully achieved using QZB. Utilization of QZB-based test strip to semi-quantitatively detect HSO3- and HOCl in real-world water samples by the "naked-eye" colorimetry are then demonstrated. Simultaneously, the determination of HSO3- and HOCl in real-world water sample has been achieved by smartphone-based standard curves. Additionally, the applications of QZB for imaging HSO3- and HOCl in vivo are successfully demonstrated. Consequently, the successful development of QZB could be promising as an efficient tool for researching the role of HSO3-/HOCl in the regulation of redox homeostasis regulation in vivo and complex signal transduction and for future food safety evaluation.[Abstract] [Full Text] [Related] [New Search]