These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Visible-light-driven photocatalytic degradation of Rose Bengal and Methylene Blue using low-cost sawdust derived SnO2 QDs@g-C3N4/biochar nanocomposite.
    Author: Bhattacharjee B, Hazarika B, Ahmaruzzaman M.
    Journal: Environ Sci Pollut Res Int; 2023 Nov; 30(52):112591-112610. PubMed ID: 37837587.
    Abstract:
    Conversion of carbon-rich waste biomass into valuable products is an environmentally sustainable method. This study accentuates the synthesis of novel SnO2 QDs@g-C3N4/biochar using low-cost sawdust by applying the pyrolysis method. Morphology, structure, and composition of the synthesized SnO2 QDs@g-C3N4/biochar nanocomposite were characterized using SEM (scanning electron microscope), TEM (transmission electron microscope), XRD (X-ray diffraction), XPS (X-ray photoelectron spectroscopy), FT-IR (infrared spectroscopy) and PL (photoluminescence) spectroscopy. The average diameter of the SnO2 QDs was measured from TEM and found to be 6.79 nm. Optical properties of the as-synthesized SnO2 QDs@g-C3N4/biochar were characterized using UV-visible spectroscopy. The direct band gap of synthesized SnO2 QDs@g-C3N4/biochar nanocomposite was calculated from Tauc's plot and found to be 2.0 eV. The fabricated SnO2 QDs@g-C3N4/biochar photocatalyst exhibited outstanding photocatalytic degradation efficiency for the removal of Rose Bengal (RB) and Methylene Blue (MB) dye through the Advanced Oxidation Process (AOP). The synthesized photocatalyst showed a degradation efficiency of 95.67% for the removal of RB under optimum conditions of 0.3 mL H2O2, photocatalyst dosage of only 0.06 gL-1, and 15 ppm initial RB concentration within 80 min, and 94.5% for the removal of MB dye with 0.5 mL of H2O2, 0.08 gL-1 of the fabricated photocatalyst and 6 ppm of initial MB concentration within 120 min. The photodegradation pathway followed the pseudo-first-order reaction kinetics with a rate constant of 0.00268 min-1 and 0.00163 min-1 for RB and MB respectively. The photocatalyst can be reused up to the 4th cycle with 80% efficiency.
    [Abstract] [Full Text] [Related] [New Search]