These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Unraveling the interplay between antibiotic resistance genes and microbial communities in water and sediments of the intensive tidal flat aquaculture.
    Author: Wang L, Hu T, Li Y, Zhao Z, Zhu M.
    Journal: Environ Pollut; 2023 Dec 15; 339():122734. PubMed ID: 37838320.
    Abstract:
    Tidal flats are formed valuably resources by the interaction of terrestrial and marine processes. Aquaculture on tidal flats has brought significant economic profits, but the over usage of antibiotics has resulted in the prevalence antibiotic resistance genes (ARGs) which pose serious threats to ecosystems. However, ARG abundances and bacterial community assemblies in the overlying water and sediments of tidal flat aquaculture areas have not been fully explored. Thus, antibiotic concentrations, ARG abundances, microbial communities and the influences of environmental factors in the Jiangsu tidal flat aquaculture ponds were investigated using high-throughput sequencing and qPCR. The concentrations of antibiotics at sampling ranged from not detectable to 2322.4 ng g-1, and sulfamethazine and ciprofloxacin were the dominant antibiotics. The sul1 and sul2 abundances were highest and the ARG abundances were higher in sediment than in water. Meanwhile, bacterial community diversities and structures were significantly different (P < 0.05) between water and sediment samples. Network analysis identified Sphingomonadacear, Pseudomonas, and Xanthobacteraceae as potential ARG-carrying pathogens. A positive correlation between ARGs and intI1 indicated that horizontal gene transfer occurred in water, while antibiotics and TN significantly influenced ARG abundances in sediment. Neutral modeling showed that deterministic and stochastic processes contributed most to the bacterial community assemblies of water and sediment samples, respectively. This study comprehensively illustrates the prevalence of ARGs in intensive tidal flat aquaculture regions and provides an effective foundation for the management of antibiotics usage.
    [Abstract] [Full Text] [Related] [New Search]