These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Detection of qacΔE Efflux Pump Gene among the Clinical Isolates of Escherichia coli and its Correlation with Resistance to Disinfectants. Author: Amiri P, Khoshnood S, Mohammadinejat M, Abdollahikahri N, Heidari H, Koupaei M, Mohamadi J, Kazemian H. Journal: Clin Lab; 2023 Oct 01; 69(10):. PubMed ID: 37844044. Abstract: BACKGROUND: Disinfectants and antiseptics inhibit the dissemination of pathogenic organisms in hospitals but often cause disinfectant-resistant microorganisms, an important factor for nosocomial infection. This study aimed to evaluate the correlation between qacΔE efflux pump gene and its resistance to disinfectants among Escherichia coli clinical isolates. METHODS: A total of 97 E. coli isolates were isolated from patients with urinary tract infections. The minimum inhibition concentration (MIC) value of chlorhexidine and benzalkonium chloride was determined using broth microdilution method. Effect of efflux pumps was assessed by MIC test in the presence of phenylalanine-arginine β-naphthylamide (PAβN), and then the qacΔE efflux pump gene was detected using polymerase chain reaction (PCR). RESULT: Of the isolates, 85.6% and 61.9% were resistant to chlorhexidine and benzalkonium chloride, respectively. Following the treatment of isolates with the efflux pump's inhibitor, PAβN, the MIC value of chlorhexidine and benzalkonium chloride decreased in 75.2% and 57.7% of the isolates, respectively. A significant correlation was found between PAβN treatment and the change in the resistant strains to susceptible strains (p = 0.021). The qacΔE gene was detected in 84.5% (n = 82) of the isolates, and the presence of the gene amongst disinfectant-resistant strains was also significant (p < 0.001). CONCLUSIONS: It is suggested to conduct other studies on other efflux pumps, as well as to periodically monitor the resistance to disinfectants. Substances inhibiting efflux pumps and neutral compounds are effective in the reduction of resistance to disinfectants. New disinfectants and drugs should be designed.[Abstract] [Full Text] [Related] [New Search]