These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Source characterization of volatile organic compounds at Carlsbad Caverns National Park.
    Author: Pan D, Pollack IB, Sive BC, Marsavin A, Naimie LE, Benedict KB, Zhou Y, Sullivan AP, Prenni AJ, Cope EJ, Juncosa Calahorrano JF, Fischer EV, Schichtel BA, Collett JL.
    Journal: J Air Waste Manag Assoc; 2023 Dec; 73(12):914-929. PubMed ID: 37850691.
    Abstract:
    Carlsbad Caverns National Park (CAVE), located in southeastern New Mexico, experiences elevated ground-level ozone (O3) exceeding the National Ambient Air Quality Standard (NAAQS) of 70 ppbv. It is situated adjacent to the Permian Basin, one of the largest oil and gas (O&G) producing regions in the US. In 2019, the Carlsbad Caverns Air Quality Study (CarCavAQS) was conducted to examine impacts of different sources on ozone precursors, including nitrogen oxides (NOx) and volatile organic compounds (VOCs). Here, we use positive matrix factorization (PMF) analysis of speciated VOCs to characterize VOC sources at CAVE during the study. Seven factors were identified. Three factors composed largely of alkanes and aromatics with different lifetimes were attributed to O&G development and production activities. VOCs in these factors were typical of those emitted by O&G operations. Associated residence time analyses (RTA) indicated their contributions increased in the park during periods of transport from the Permian Basin. These O&G factors were the largest contributor to VOC reactivity with hydroxyl radicals (62%). Two PMF factors were rich in photochemically generated secondary VOCs; one factor contained species with shorter atmospheric lifetimes and one with species with longer lifetimes. RTA of the secondary factors suggested impacts of O&G emissions from regions farther upwind, such as Eagle Ford Shale and Barnett Shale formations. The last two factors were attributed to alkenes likely emitted from vehicles or other combustion sources in the Permian Basin and regional background VOCs, respectively.Implications: Carlsbad Caverns National Park experiences ground-level ozone exceeding the National Ambient Air Quality Standard. Volatile organic compounds are critical precursors to ozone formation. Measurements in the Park identify oil and gas production and development activities as the major contributors to volatile organic compounds. Emissions from the adjacent Permian Basin contributed to increases in primary species that enhanced local ozone formation. Observations of photochemically generated compounds indicate that ozone was also transported from shale formations and basins farther upwind. Therefore, emission reductions of volatile organic compounds from oil and gas activities are important for mitigating elevated O3 in the region.
    [Abstract] [Full Text] [Related] [New Search]