These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Exosomes from adipose-derived mesenchymal stem cells improve liver fibrosis by regulating the miR-20a-5p/TGFBR2 axis to affect the p38 MAPK/NF-κB pathway. Author: Gan L, Zheng L, Yao L, Lei L, Huang Y, Zeng Z, Fang N. Journal: Cytokine; 2023 Dec; 172():156386. PubMed ID: 37852157. Abstract: OBJECTIVE: Human adipose-derived mesenchymal stem cell exosomes (ADSC-Exos) are active constituents for treating liver fibrosis. This paper attempted to preliminarily explain the functional mechanism of ADSC-Exos in liver fibrosis through the p38 MAPK/NF-κB pathway. METHODS: The cell models of hepatic fibrosis were established by inducing LX-2 cells with TGF-β1. Mouse models of liver fibrosis were established by treating mice with CCl4. The in vivo and in vitro models of liver fibrosis were treated with ADSC-Exos. ADSCs were identified by flow cytometry/Alizarin red/oil red O/alcian blue staining. ADSC-Exos were identified by transmission electron microscopy, nanoparticle tracking analysis, and Western blot. LX-2 cell proliferation/viability were evaluated by MTT/BrdU assays. Exosomes were tracked in vivo and body weight changes in mice were monitored. Hepatic pathological changes were observed by HE/Masson staining. α-SMA/collagen I levels in liver tissues were assessed by immunohistochemistry. HA/PIIINP concentrations were measured using the magnetic particle chemiluminescence method. Liver function was assessed using an automatic analyzer. miR-20a-5p level was measured by RT-qPCR. The mRNA levels of fibrosis markers were determined by RT-qPCR, and their protein levels and levels of MAPK/NF-κB pathway-related proteins, as well as TGFBR2 protein level were measured by Western blot. The P65 nuclear expression in mouse liver tissues was quantified by immunofluorescence. RESULTS: ADSC-Exos suppressed TGF-β1-induced LX-2 cell proliferation and fibrosis and reduced mRNA and protein levels of fibrosis markers in vitro. ADSC-Exos ameliorated liver fibrosis by inhibiting the p38 MAPK/NF-κB pathway activation. ADSC-Exos inhibited activation of the p38 MAPK/NF-κB pathway via regulating the miR-20a-5p/TGFBR2 axis. The in vivo experiment asserted that ADSC-Exos were mainly distributed in the liver, and ADSC-Exos relieved liver fibrosis in mice, which was evidenced by alleviating decreased body weight, reducing collagen and enhancing liver function, and repressed the activation of the p38 MAPK/NF-κB pathway via the miR-20a-5p/TGFBR2 axis. CONCLUSION: ADSC-Exos attenuated liver fibrosis by suppressing the activation of the p38 MAPK/NF-κB pathway via the miR-20a-5p/TGFBR2 axis.[Abstract] [Full Text] [Related] [New Search]