These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The impact of ocean acidification and cadmium toxicity in the marine crab Scylla serrata: Biological indices and oxidative stress responses. Author: Thangal SH, Nandhini Priya R, Vasuki C, Gayathri V, Anandhan K, Yogeshwaran A, Muralisankar T, Ramesh M, Rajaram R, Santhanam P, Venmathi Maran BA. Journal: Chemosphere; 2023 Dec; 345():140447. PubMed ID: 37858766. Abstract: Ocean acidification (OA) and heavy metal pollution in marine environments are potentially threatening marine life. The interactive effect of OA and heavy metals could be more vulnerable to marine organisms than individual exposures. In the current study, the effect of OA on the toxicity of cadmium (Cd) in the crab Scylla serrata was evaluated. Crab instars (0.07 cm length and 0.1 g weight) were subjected to pH 8.2, 7.8, 7.6, 7.4, 7.2, and 7.0 with and without 0.01 mg l-1 of Cd for 60 days. We noticed a significant decrease in growth, molting, protein, carbohydrate, amino acid, lipid, alkaline phosphatase, and haemocytes of crabs under OA + Cd compared to OA treatment. In contrast, the growth, protein, amino acid, and haemocyte levels were significantly affected by OA, Cd, and its interactions (OA + Cd). However, superoxide dismutase, catalase, lipid peroxidation, glutamic oxaloacetate transaminase, glutamic pyruvate transaminase, and accumulation of Cd in crabs were considerably elevated in OA + Cd treatments compared to OA alone treatments. The present investigation showed that the effect of Cd toxicity might be raised under OA on S. serrata. Our study demonstrated that OA significantly affects the biological indices and oxidative stress responses of S. serrata exposed to Cd toxicity.[Abstract] [Full Text] [Related] [New Search]