These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Establishment and characterization of a novel indirect ELISA method based on ASFV antigenic epitope-associated recombinant protein. Author: Jin J, Bai Y, Zhang Y, Lu W, Zhang S, Zhao X, Sun Y, Wu Y, Zhang A, Zhang G, Sun A, Zhuang G. Journal: Int J Biol Macromol; 2023 Dec 31; 253(Pt 7):127311. PubMed ID: 37865977. Abstract: African Swine Fever (ASF) is an acute and highly lethal disease in pigs caused by African Swine Fever Virus (ASFV). Viral proteins have been commonly used as antigenic targets for the development of ASF diagnostic methods. However, the prokaryotic expression of viral proteins has deficiencies such as instability, insolubility, and high cost in eukaryotic situations. This study screened and verified ASFV-encoded p72, p54, and p30 protein antigenic epitopes. Subsequently, a novel antigenic epitope-associated recombinant protein was designed based on an ideal structural protein and expressed in Escherichia coli (E. coli). Western blot analysis indicated that the recombinant protein could specifically react with the monoclonal antibody (mAb) of p72 and polyclonal antibodies of p54 and p30, respectively. Next, an ASF indirect ELISA (iELISA) method was established based on the recombinant protein, which has no specific reaction with sera of other important pig viral diseases. Meanwhile, it shows a sensitivity to detecting dilutions of ASF-positive reference serum up to 1:6400. The clinical sample detection results showed a high coincidence rate of 98 % with a commercial competition ELISA kit. In conclusion, we established a novel specific, and sensitive ASF serologic detection method that opens new avenues for ASF serodiagnostic method development.[Abstract] [Full Text] [Related] [New Search]