These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Circadian clock gene BMAL1 regulates STAR expression in goose ovarian preovulatory granulosa cells.
    Author: Chen R, Qin Y, Du J, Liu J, Dai S, Lei M, Zhu H.
    Journal: Poult Sci; 2023 Dec; 102(12):103159. PubMed ID: 37871489.
    Abstract:
    The ovarian circadian clock plays a regulatory role in the avian ovulation-oviposition cycle. However, little is known regarding the ovarian circadian clock of geese. In this study, we investigated rhythmic changes in clock genes over a 48-h period and identified potential clock-controlled genes involved in progesterone synthesis in goose ovarian preovulatory granulosa cells. The results showed that BMAL1, CRY1, and CRY2, as well as 4 genes (LHR, STAR, CYP11A1, and HSD3B) involved in progesterone synthesis exhibited rhythmic expression patterns in goose ovarian preovulatory granulosa cells over a 48-h period. Knockdown of BMAL1 decreased the progesterone concentration and downregulated STAR mRNA and protein levels in goose ovarian preovulatory granulosa cells. Overexpression of BMAL1 increased the progesterone concentration and upregulated the STAR mRNA level in goose ovarian preovulatory granulosa cells. Moreover, we demonstrated that the BMAL1/CLOCK complex activated the transcription of goose STAR gene by binding to an E-box motif. These results suggest that the circadian clock is involved in the regulation of progesterone synthesis in goose ovarian preovulatory granulosa cells by orchestrating the transcription of steroidogenesis-related genes.
    [Abstract] [Full Text] [Related] [New Search]