These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of soy peptides with different hydrolysis degrees on the rheological, tribological, and textural properties of soy protein isolate gels.
    Author: Bourouis I, Li B, Pang Z, Chen C, Liu X.
    Journal: J Food Sci; 2023 Dec; 88(12):5122-5135. PubMed ID: 37872837.
    Abstract:
    This study was performed to examine the effect of two soy peptides addition with hydrolysis degrees of 90% and 30% (hydrolysis degree (DH)90, DH30) at various concentrations (1-10 mg/mL) on soy protein isolate (SPI) gel behavior and pure SPI gel was set as control. SPI gels with adding peptides were prepared, and their rheological, textural, and tribological properties, as well as water-holding capacity, zeta potential, and particle size, were determined. During the rheological measurement, adding peptides reduced storage modulus (G') compared to the control, with larger particles formed. However, peptide addition could significantly reduce gelation time, showing a more significant effect with DH30. The gels' firmness, adhesiveness, and water-holding capacity decreased as peptide concentration increased. Syneresis was observed in gels with peptides, whereas the control sample showed no syneresis. Based on the rheological results, the shear stress in the control sample was higher than in the gels containing peptides indicating more resistance to shear. The gels with DH30 showed greater G' and G″ than DH90 at all studied concentrations. Nevertheless, there was an improvement in the lubrication behavior of SPI gels with peptide addition. DH30 showed a relatively more significant friction reduction than DH90, indicating their slightly better lubrication properties.
    [Abstract] [Full Text] [Related] [New Search]