These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Efficient photocatalytic reduction of p-nitrophenol under visible light irradiation based on Ag NPs loaded brown 2D g-C3N4 / g-C3N4 QDs nanocomposite. Author: Maged S, El-Borady OM, El-Hosainy H, El-Kemary M. Journal: Environ Sci Pollut Res Int; 2023 Nov; 30(55):117909-117922. PubMed ID: 37874512. Abstract: Recently, low-cost graphitic carbon nitride (g-C3N4) revealed high photocatalytic activities and provided solutions to environmental pollution. In this study, we synthesized brown mesoporous 2D g-C3N4 by calcination dicyandiamide with pluronic P123. This is followed by loading of Ag NPs on the prepared 2D g-C3N4 by photodeposition process. After that, a ternary composite 2% Ag/ 2D g-C3N4 / g-C3N4 QDs heterojunction photocatalyst has been successfully prepared. The prepared nanomaterials were comprehensively characterized by various analysis techniques such as XRD, UV-Vis., BET, XPS, SEM, TEM. This new system exhibited a large surface area with porous structure and a wide absorption of visible light. The results verified that Ag NPs decoration enhanced the charge separation of photo-generated carriers of g-C3N4 2D and g-C3N4 QDs, promote significant enhancement in the photocatalytic activity for reduction of p-nitrophenol with a rate constant (k) value of 0.49729 / min in 6 min. This rate is about two-fold higher than that observed for pure g-C3N4 2D and g-C3N4 QDs as well as shows an improvement compared to 2% Ag/ g-C3N4 2D and g-C3N4 2D/ g-C3N4 QDs. The results open the door to design highly efficient 2D/0D nanocomposite photocatalysts for a wide variety of environmental applications.[Abstract] [Full Text] [Related] [New Search]