These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: S-scheme heterojunctions based on novel Sm2CeMnO6 double perovskite oxide and g-C3N4 with excellent photocatalytic dye degradation performances. Author: Abedini E, Roudgar-Amoli M, Alizadeh A, Shariatinia Z. Journal: Environ Sci Pollut Res Int; 2023 Nov; 30(54):114956-114984. PubMed ID: 37878171. Abstract: It has become of utmost importance to preserve marine life and human health by protecting aquatic environments from contaminants. Therefore, using photocatalytic materials in treatment of contaminated water is a promising and innovative technique. Novel double perovskite Sm2CeMnO6 was synthesized through a modified Pechini sol-gel method. Also, urea and melamine were utilized to synthesize graphitic carbon nitride (g-C3N4). Combination of Sm2CeMnO6 and g-C3N4 produced several S-scheme heterojunction materials in diverse components ratios. Average crystallite sizes of Sm2CeMnO6 and Sm2CeMnO6/g-C3N4 (20:80) samples were calculated by Debye-Scherrer and Williamson-Hall methods to be 19.77, 22.72 nm and 42.01, 43.73 nm, respectively. The coexistence of g-C3N4 (002) with a d-spacing of 0.325 nm and Sm2CeMnO6 planes of (222), (111), and (400) with spacing values of 0.314, 0.302, and 0.294 nm, respectively, was depicted in the HR-TEM image of the Sm2CeMnO6/g-C3N4 (20:80). The estimated bandgaps for the g-C3N4, Sm2CeMnO6, and Sm2CeMnO6/g-C3N4 (20:80) were 2.70, 2.60, and 2.65 eV, respectively. Their application was investigated in photocatalytic degradation of methylene blue (MB) dye as typical pollutant. The estimated degradation pathway of MB was also provided through LC-MS analysis. Under the identical conditions, the best photocatalytic performance was found for Sm2CeMnO6/g-C3N4 (20:80) composite. Using response surface methodology (RSM), operational parameters of the photocatalytic degradation were modeled and optimized by the best composite through central composite design approach. Applying optimized parameters led to 96% degradation of MB (8 mg/L) at pH 10 under 120 min visible light irradiation (λ > 365 nm) using 0.15 g of Sm2CeMnO6/g-C3N4 (20:80) composite in 100 mL aqueous solution. Due to low intrinsic charge transfer resistance, modified Eg, and good performance in e‒/h+ pairs production, Sm2CeMnO6/g-C3N4 (20:80) nanocomposite was introduced as a promising S-scheme photocatalyst.[Abstract] [Full Text] [Related] [New Search]