These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Simple within-stride changes in treadmill speed can drive selective changes in human gait symmetry. Author: Browne MG, Stenum J, Padmanabhan P, Roemmich RT. Journal: PLoS One; 2023; 18(10):e0287568. PubMed ID: 37883477. Abstract: Millions of people walk with asymmetric gait patterns, highlighting a need for customizable rehabilitation approaches that can flexibly target different aspects of gait asymmetry. Here, we studied how simple within-stride changes in treadmill speed could drive selective changes in gait symmetry. In Experiment 1, healthy adults (n = 10) walked on an instrumented treadmill with and without a closed-loop controller engaged. This controller changed the treadmill speed to 1.50 or 0.75 m/s depending on whether the right or left leg generated propulsive ground reaction forces, respectively. Participants walked asymmetrically when the controller was engaged: the leg that accelerated during propulsion (right) showed smaller leading limb angles, larger trailing limb angles, and smaller propulsive forces than the leg that decelerated (left). In Experiment 2, healthy adults (n = 10) walked on the treadmill with and without an open-loop controller engaged. This controller changed the treadmill speed to 1.50 or 0.75 m/s at a prescribed time interval while a metronome guided participants to step at different time points relative to the speed change. Different patterns of gait asymmetry emerged depending on the timing of the speed change: step times, leading limb angles, and peak propulsion were asymmetric when the speed changed early in stance while step lengths, step times, and propulsion impulses were asymmetric when the speed changed later in stance. In sum, we show that simple manipulations of treadmill speed can drive selective changes in gait symmetry. Future work will explore the potential for this technique to restore gait symmetry in clinical populations.[Abstract] [Full Text] [Related] [New Search]