These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ginsenoside compound K exerts anti-inflammatory effects through transcriptional activation and transcriptional inhibition of glucocorticoid receptor in rheumatoid arthritis fibroblast-like synoviocytes.
    Author: Yang M, Mao L, Yang X, Xu X, Tang C, Wei W, Chen J.
    Journal: Int Immunopharmacol; 2023 Dec; 125(Pt A):111080. PubMed ID: 37883815.
    Abstract:
    Ginsenoside compound K (GCK) has anti-inflammatory and immunoregulatory effects, and glucocorticoid receptor (GR) has been considered as its potential target. But the mechanism by which GCK exerts its anti-inflammatory effects after GR activation remains unclear. In this study, molecular docking, isothermal titration calorimetry, siRNA of GR and GRA458T mutation were used to confirm the anti-inflammatory mechanism of GCK targeting GR in fibroblast-like synoviocytes (FLS). The results showed that the key binding sites of GR and GCK were identified as ASN564, MET560 and ASN638, with binding levels at the μm level. In addition, the inhibitory effect of GCK on the proliferation of FLS and the secretion of inflammatory cytokines (IL-6, IL-8, and IL-1β) were mediated by transcriptional activation of GR, but on the migration, invasion, and TNF-α secretion of FLS were mediated by transcriptional inhibition of GR. These actions exert anti-inflammatory effects through indirect and direct inhibition of NF-κB transcriptional activity, respectively. In conclusion, this study elucidates that GCK can directly bind to and activate GR. Furthermore, after activation, GR mediates the anti-inflammatory effects of GCK through two mechanisms: transcriptional activation and transcriptional inhibition.
    [Abstract] [Full Text] [Related] [New Search]