These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Gill ultrastructure of the Pacific hagfish Eptatretus stouti.
    Author: Mallatt J, Paulsen C.
    Journal: Am J Anat; 1986 Oct; 177(2):243-69. PubMed ID: 3788822.
    Abstract:
    At the gross anatomical level, hagfish gills show unusual features not seen in any other fish gills. Our study was undertaken to determine if peculiarities also characterize the microscopic anatomy and ultrastructure of hagfish gills. To the contrary, branchial respiratory lamellae of Pacific hagfish were found to resemble the lamellae of lampreys, elasmobranchs, and teleosts, often down to the finest subcellular details. As in other fish, hagfish lamellae are lined by epithelium containing pavement cells with organelles indicative of a secretory function, basal cells showing undifferentiated cell features, and branchial ionocytes. The ionocytes are identical to chloride cells of teleosts in cytostructure, distribution, and abundance. There are pillar and marginal capillaries in hagfish gill lamellae. Pillar cells contain bundles of 5-nm microfilaments, and they associate with collagen columns as in other fish. Hagfish pillar cells do exhibit odd features, however: They cluster (groups of up to nine were seen), and their extracellular collagen columns are rarer than in other fish gills (averaging only two columns per three pillar cells). Other special features of hagfish gills are the following: lipid droplets and smooth endoplasmic reticulum are well developed in all cell types; pavement cells secrete a lipomucous product (stains with periodic acid-Schiff, Alcian blue, and Sudan black B); and goblet cells are absent. The presence of "chloride cells" in hagfish is puzzling, as hagfish body fluids are iso-osmotic to seawater and there is no need to osmoregulate for sodium chloride; the ionocytes contain carbonic anhydrase, suggesting a function in acid/base regulation.
    [Abstract] [Full Text] [Related] [New Search]