These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Biochemical Insights into a Novel Family 2 Glycoside Hydrolase with Both β-1,3-Galactosidase and β-1,4-Galactosidase Activity from the Arctic.
    Author: Li D, Wang Z, Yu Y, Li H, Luo W, Chen B, Niu G, Ding H.
    Journal: Mar Drugs; 2023 Sep 29; 21(10):. PubMed ID: 37888456.
    Abstract:
    A novel GH2 (glycoside hydrolase family 2) β-galactosidase from Marinomonas sp. BSi20584 was successfully expressed in E. coli with a stable soluble form. The recombinant enzyme (rMaBGA) was purified to electrophoretic homogeneity and characterized extensively. The specific activity of purified rMaBGA was determined as 96.827 U mg-1 at 30 °C using ONPG (o-nitrophenyl-β-D-galactopyranoside) as a substrate. The optimum pH and temperature of rMaBGA was measured as 7.0 and 50 °C, respectively. The activity of rMaBGA was significantly enhanced by some divalent cations including Zn2+, Mg2+ and Ni2+, but inhibited by EDTA, suggesting that some divalent cations might play important roles in the catalytic process of rMaBGA. Although the enzyme was derived from a cold-adapted strain, it still showed considerable stability against various physical and chemical elements. Moreover, rMaBGA exhibited activity both toward Galβ-(1,3)-GlcNAc and Galβ-(1,4)-GlcNAc, which is a relatively rare occurrence in GH2 β-galactosidase. The results showed that two domains in the C-terminal region might be contributed to the β-1,3-galactosidase activity of rMaBGA. On account of its fine features, this enzyme is a promising candidate for the industrial application of β-galactosidase.
    [Abstract] [Full Text] [Related] [New Search]