These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ultrasensitive Ratiometric Electrochemiluminescence Sensor with an Efficient Antifouling and Antibacterial Interface of PSBMA@SiO2-MXene for Oxytetracycline Trace Detection in the Marine Environment.
    Author: Ding M, Zhang S, Wang J, Ding Y, Ding C.
    Journal: Anal Chem; 2023 Nov 07; 95(44):16327-16334. PubMed ID: 37888537.
    Abstract:
    The sensitivity and accuracy of electrochemiluminescence (ECL) sensors for detecting small-molecule pollutants in environmental water are affected not only by nonspecific adsorption of proteins and other molecules but also by bacterial interference. Therefore, there is an urgent need to develop an ECL sensor with antifouling and antibacterial functions for water environment monitoring. Herein, a highly efficient antifouling sensing interface (PSBMA@SiO2-MXene) based on zwitterionic sulfobetaine methacrylate (SBMA) antifouling nanospheres (NPs) and two-dimensional MXene nanosheets was designed for the sensitive detection of oxytetracycline (OTC), an antibiotic small-molecule pollutant. Specifically, SBMA with good hydrophilicity and electrical neutrality was connected to SiO2 NPs, thus effectively reducing protein and bacterial adsorption and improving stability. Second, MXene with a high specific surface area was selected as the carrier to load more antifouling NPs, which greatly improves the antifouling performance. Meanwhile, the introduction of MXene also enhances the conductivity of the antifouling interface. In addition, a ratio-based sensing strategy was designed to further improve the detection accuracy and sensitivity of the sensor by utilizing Au@luminol as an internal standard factor. Based on antifouling and antibacterial interfaces, as well as internal standard and ratiometric sensing strategies, the detection range of the proposed sensor was 0.1 ng/mL to 100 μg/mL, with a detection limit of 0.023 ng/mL, achieving trace dynamic monitoring of antibiotics in complex aqueous media.
    [Abstract] [Full Text] [Related] [New Search]