These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Recent Advances in First-Row Transition Metal-Catalyzed Reductive Coupling Reactions for π-Bond Functionalization and C-Glycosylation. Author: Wei Y, Lin LQH, Lee BC, Koh MJ. Journal: Acc Chem Res; 2023 Nov 21; 56(22):3292-3312. PubMed ID: 37917928. Abstract: ConspectusEfficient construction of ubiquitous carbon-carbon bonds between two electrophiles has garnered interest in recent decades, particularly if it is mediated by nonprecious, first-row transition metals. Reductive coupling has advantages over traditional cross-coupling by obviating the need for stoichiometric air- and moisture-sensitive organometallic reagents. By harnessing transition metal-catalyzed reductive coupling as a powerful tool, intricate molecular architectures can be readily assembled through the installation of two C-C bonds across π systems (alkenes/alkynes) via reaction with two appropriate electrophiles. Despite advances in reductive alkene difunctionalization, there remains significant potential for the discovery of novel reaction pathways. In this regard, development of reductive protocols that enable the union of challenging alkyl/alkynyl electrophiles in high regio- and chemoselectivity remains a highly sought-after goal.Apart from π-bond functionalization, reductive coupling has found application in carbohydrate chemistry, particularly in the synthesis of valuable C-glycosyl compounds. In this vein, suitable glycosyl donors can be used to generate reactive glycosyl radical intermediates under reductive conditions. Through elaborately designed reactions, these intermediates can be trapped to furnish pharmaceutically relevant glycoconjugates. Consequently, diversification in C-glycosyl compound synthesis using first-row transition metal catalysis holds strong appeal.In this Account, we summarize our efforts in the development of first-row transition metal-catalyzed reductive coupling reactions for applications in alkene/alkyne functionalization and C-glycosylation. We will first discuss the nickel (Ni)-catalyzed reductive difunctionalization of alkenes, aided by an 8-aminoquinoline (AQ) directing auxiliary. Next, we highlight the Ni-catalyzed hydroalkylation of alkenyl amides tethered with a similar AQ-derived directing auxiliary. Lastly, we discuss an efficient synthesis of 1,3-enynes involving site- and stereoselective reductive coupling of terminal alkynes with alkynyl halides and NHPI esters.Beyond alkene dicarbofunctionalization, we extended the paradigm of transition metal-catalyzed reductive coupling toward the construction of C-glycosidic linkages in carbohydrates. By employing an earth-abundant iron (Fe)-based catalyst, we show that useful glycosyl radicals can be generated from glycosyl chlorides under reductive conditions. These intermediates can be captured in C-C bond formation to furnish valuable C-aryl, C-alkenyl, and C-alkynyl glycosyl compounds with high diastereoselectivity. Our Ni-catalyzed multicomponent union of glycosyl chlorides, aryl/alkyl iodides, and isobutyl chloroformate under reductive conditions led to the stereoselective synthesis of C-acyl glycosides. In addition to Fe and Ni, we discovered a Ti-catalyzed/Mn-promoted synthetic route to access C-alkyl and C-alkenyl glycosyl compounds, through the reaction of glycosyl chlorides with electron-deficient alkenes/alkynes. We further developed an electron donor-acceptor (EDA) photoactivation system leveraging decarboxylative and deaminative strategies for C-glycosylation under Ni catalysis. This approach has been demonstrated to selectively activate carboxyl and amino motifs to furnish glycopeptide conjugates. Finally, through two distinct catalytic transformations of bench-stable heteroaryl glycosyl sulfones, we achieved stereodivergent access to both α- and β-anomers of C-aryl glycosides, one of which involves a Ni-catalyzed reductive coupling with aryl iodides.The findings presented in this Account are anticipated to have far-reaching implications beyond our research. We foresee that these results will pave the way for new transformations founded on the concept of reductive coupling, leading to the discovery of novel applications in the future.[Abstract] [Full Text] [Related] [New Search]