These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synergistic effect of photoelectrochemical aptasensor based on staggered gap ZnO/BiFeO3 heterojunction coupled with cDNA-CdS sensitizer enabling ultrasensitive assay of kanamycin.
    Author: Zhong C, Zhang C, Yang Y, Liang X, Pang Q, Zhou L, Chen P.
    Journal: Food Chem; 2024 Mar 30; 437(Pt 1):137877. PubMed ID: 37918155.
    Abstract:
    Using staggered-gap ZnO/BiFeO3 heterojunction as photoactive materials and cDNA-CdS as the sensitizer for sensitive Kanamycin (KAN) detection, we have created a unique signal-off biosensing platform. The ZnO/BiFeO3 heterojunction provides active sites for aptamer loading and enhances photocurrent responsiveness. Rapid interfacial charge transfer and the separation efficiency of photo-generated carriers are enhanced by sensitization of the ternary heterojunction ZnO/BiFeO3/CdS. Signal-amplified quenching occurs when sensitizers are replaced with sterically hindered KAN. Because of the aptamer's greater affinity for KAN, the replacement of CdS causes a decrease in photocurrent response. Additionally, the weakly conductive aptamer-KAN complex causes steric hindrance, which exacerbates the photoelectrochemical signal-damping effect even more. The photoelectrochemical aptasensor exhibits excellent selectivity and stability, detecting KAN within the range of 0.00005825-0.233 μg/mL with a detection limit of 0.0466 ng/mL (S/N = 3). This work demonstrates the potential of perovskite oxides and their heterostructures for advanced photoelectrochemical biosensing applications.
    [Abstract] [Full Text] [Related] [New Search]