These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Process Analysis and Parameter Selection of Cardiomyocyte Electroporation Based on the Finite Element Method. Author: Zhang H, Ji X, Zang L, Yan S, Wu X. Journal: Cardiovasc Eng Technol; 2024 Feb; 15(1):22-38. PubMed ID: 37919538. Abstract: PURPOSE: Pulsed-field ablation (PFA) has attracted attention for the treatment of atrial fibrillation. This study aimed to further explore the relationship between the transmembrane voltage, pore radius and the intensity and duration of pulsed electric fields, which are closely related to the formation of irreversible electroporation. The different mechanisms of microsecond and nanosecond pulses acting on cardiomyocyte cellular and nuclear membranes were studied. METHODS: A 3-D cardiomyocyte model with a nucleus was constructed to simulate the process of electroporation in cells under an electric field. Cell membrane electroporation was used to simulate the effect of different pulse parameters on the process of electroporation. RESULTS: Under a single pulse with a field strength of 1 kV/cm and width of 100 μs, the transmembrane potential (TMP) of the cell membrane reached 1.33 V, and the pore density and conductivity increased rapidly. The maximum pore radius of the cell membrane was 43.4 nm, and the electroporation area accounted for 4.6% of the total cell membrane area. The number of pores was positively correlated with the electric field intensity when the cell was exposed to electric fields of 0.5 to 6 kV/cm. Under a nanosecond pulse, the TMP of the nuclear and cell membranes exceeded 1 V after exposure to electric fields with strengths of 4 and 5 kV/cm, respectively. CONCLUSION: This study simulated the electroporation process of cardiomyocyte, and provides a basis for the selection of parameters for the application of PFA for application toward arrhythmias.[Abstract] [Full Text] [Related] [New Search]